

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 1حقوق الطبع محفوظة للمجلة

EVOLVABLE HARDWARE DESIGN OF SEQUENTIAL

LOGIC CIRCUIT

Wesam M.Ahmed1, Abubaker Kashada2

1 ,2 Surman College of Science & Technology, Libya

1wesam_ahmed@scst.edu.ly

2kashada@scst.edu.ly

Abstract

 Evolvable Hardware (EHW) refers to the generation of electronic circuits using

evolutionary algorithms (in our case genetic algorithms).Genetic algorithm (GA) is a

robust search algorithm loosely based on population genetics. It effectively seeks

solutions from a vast search space at reasonable computation costs. Before a GA

starts, a set of candidate solutions, represented as binary bit strings, are prepared. This

set is referred to as a population, and each candidate solution within the set as a

chromosome. A fitness function is also defined which represents the problem to be

solved in terms of criteria to be optimized. The chromosomes then undergo a process

of evaluation, selection, and reproduction. In the evaluation stage, the chromosomes

are tested according to the fitness function. The results of this evaluation are then used

to weight the random selection of chromosome in favor of the fitter ones for the final

stage of reproduction. In this final stage, new generations of the chromosomes are

"evolved" through genetic operations which attempt to pass on better characteristics

to the next generation. Through this process, which can be repeated as many times as

required, less fit chromosomes are gradually expelled from a population and the fitter

chromosomes become more likely to emerge as the final solution.

Keywords:Evolvable Hardware; Genetic algorithm;Evolutionary

algorithms;sequential logic circuit.

1.Introduction

The modeling methodology presented in this paper has been adopted for the early

steps of the whole development process through which the evolvable chip is obtained.

Also this high level of simulation and modeling makes possible prediction that, the

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 2حقوق الطبع محفوظة للمجلة

evolvable hardware solution is possible to the given task, i.e. image compression [1].

Hardware Description languages (HDL) is selected toward hardware implementation

because it is a rich standard language and many well supported tools for efficient

simulation and modeling are exist [2].

 The use of HDL language in simulation and modeling of systems allows designing

parameterized designs, possibility of module reuse, easy management of large

designs, enhanced readability, and designs written independently of the technologies

used for its final realization.

In a sequential logic circuit, the outputs depend not just on the current values of the

inputs, but also on past values of the inputs. The circuit has memory. Sequential

circuits can do two things that combinational circuits cannot: they can recognize

sequences of inputs and they can generate sequences of outputs. Efforts have been

done to evolve the sequential logic circuits [3]

 A sequential logic circuit can be made by adding feedback to a combinational logic

circuit:

2. Genetic Algorithms

The automated synthesis of digital logic to satisfy the function specification is a well-

researched area [4, 5, 6]. This section presents the main operation and features of a

conventional GA.

To apply evolution to the design of circuits, one or more candidate designs are

described by a string of bits within a memory pool. This memory keeps the so called

phenotype or population, which initially consists of randomly selected binary-strings

named chromosomes, individuals or genotype and may encode the configuration of

reprogrammable arithmetic and logic units or reprogrammable interconnections

between hardware components. Each one of these chromosomes is evaluated in terms

of how accurately the given configuration (chromosome) approaches the targeted

functionality. The evaluation mechanism is called the fitness-function and

incorporates one or more objectives that characterize the ideal behavior of a circuit

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 3حقوق الطبع محفوظة للمجلة

[7]. Moreover, GAs employ simple operators during reproduction, such as crossover

and mutation. At each reproduction two new chromosomes are produced (offspring's)

from the parents, which are selected based on their fitness-score from the current

population. The aim of the GA is to potentially produce fitter chromosomes compared

with those comprising the old population. This iterative process is repeated until an

acceptable solution is found or a specified number of iterations, called generations,

have been completed. Figure 2 depicts the design flow of a generic GA. According to

this, the first population is initialized with random candidate designs.

Figure 1:Design flow of a generic GA

The Algorithms

 Randomly generate an initial population M(0)

 Compute and save the fitness u(m) for each individual m in the current

population M(t)

 Define selection probabilities p(m) for each individual m in M(t) so that p(m)

is proportional to u(m)

 Generate M(t+1) by probabilistically selecting individuals from M(t) to

produce offspring via genetic operators

 Repeat step 2 until satisfying solution is obtained.

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 4حقوق الطبع محفوظة للمجلة

3. Evolvable Hardware

Figure 2: Taxonomy of evolvable hardware

Evolvable Hardware (EHW) techniques apply machine-learning methods to the

automated design, configuration, or repair of electronic devices [8]. While EHW is a

new and growing field, it has been successfully applied to obtain useful results in a

variety of digital logic and arithmetic circuit applications as well as amplifier circuits,

antenna designs and other areas. In this laboratory assignment.

Here, the fundamental concept behind EHW is to use Genetic Algorithms to obtain

FPGA configurations autonomously. GAs utilize principles gleaned from natural

evolutionary processes as an optimization method where the fundamental premise is

that the better-suited offspring from the current generation will be chosen to be

present in the succeeding generation, leading to a gradual but steady increase in the

capabilities of the individuals in the population [9].

Population-based GAs for EHW start out with a random or semi-random population

of designs, each of which constitute potential design candidates that solve the problem

at hand. These designs are then optimized by applying genetic operators. Genetic

operators include crossover of useful traits from 2 existing designs and random

mutation that adds new traits to individuals in the population. Ideally, after applying

these genetic operators and selecting the best circuits that result from them, each

solution is more optimal than its predecessors.

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 5حقوق الطبع محفوظة للمجلة

4. Evolutionary Algorithms

Evolutionary Algorithm theory and show the corresponding between Evolutionary

Algorithm and classic design model. Evolutionary Algorithms has appeared as a

general concept for developing new computational models for optimization and

design [10]. The principles of evolution in nature have been modeled in a variety of

different ways and thus a number of computational models have been developed.

These are referred to as Evolutionary Algorithms. Evolutionary algorithms have a

common conceptual basis associated with the simulation of two fundamental

processes [11]. These are the processes of random variation and selection within a

population, described by Charles Darwin (1859) as the principles of evolution.

The interplay of variation and selection gradually pulls the population to a target that

in evolutionary computation is merely the solution of a computational problem. Thus

evolutionary search is employed to solve difficult problems in optimization and

design. In many problems, evolutionary algorithms have been found to produce

solutions that are better than those produced by the traditional design and other search

techniques. Solutions obtained by evolution are often unusual in construction, since

they are generated in a completely different manner from the conventional methods

for optimization and design. This concept of evolutionary design of efficient and

novel solutions has also been adopted in the electronic circuit. Design (see Figure 3).

Figure 3. Use of the evolutionaryalgorithms (EA) to create electronic circuits

5.Genetic Operators

Five phases are considered in a genetic algorithm.

Initial Population

 The process begins with a set of individuals which is called a Population. Each

individual is a solution to the problem you want to solve.An individual is

characterized by a set of parameters (variables) known as Genes. Genes are joined

into a string to form a Chromosome (solution). In a genetic algorithm, the set of genes

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 6حقوق الطبع محفوظة للمجلة

of an individual is represented using a string, in terms of an alphabet. Usually, binary

values are used (string of 1s and 0s). We say that we encode the genes in a

chromosome.

Figure 4.Population, Chromosomes and Genes

2. Fitness Function

The fitness function determines how fit an individual is (the ability of an individual to

compete with other individuals). It gives a fitness score to each individual. The

probability that an individual will be selected for reproduction is based on its fitness

score.

3. Selection

The idea of selection phase is to select the fittest individuals and let them pass their

genes to the next generation.Two pairs of individuals (parents) are selected based on

their fitness scores. Individuals with high fitness have more chance to be selected for

reproduction.

4. Crossover

Crossover is the most significant phase in a genetic algorithm. For each pair of

parents to be mated, a crossover point is chosen at random from within the genes. For

example, consider the crossover point to be 3 as shown below

Figure 5.Crossover point

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 7حقوق الطبع محفوظة للمجلة

Offspring are created by exchanging the genes of parents among themselves until the

crossover point is reached.

Figure 6. Exchanging genes among parents

The new offspring are added to the population

Figure 6. New offspring

5.Mutation

 In certain new offspring formed, some of their genes can be subjected to a

mutation with a low random probability. This implies that some of the bits in the bit

string can be flipped.

Figure 7. Mutation: Before and After

Mutation occurs to maintain diversity within the population and prevent premature

convergence.

1.Benchmark Set

A subset of the PLA benchmark set given in Table 2 is used in this evaluation. The

table shows the benchmarks used, together with their number of input/

output/products.

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 8حقوق الطبع محفوظة للمجلة

Benchmark # Input # Output # p

Add1c.pla

Add2_3c.pla

Mult2.pla

Exam1.pla

Exam2.pla

Exam3.pla

Exam4.pla

Table 2. Statistics of benchmark examples

2. Crossover and mutation

Crossover and mutation probabilities are dealt with as a single unit, as they are

similar and each has a significant effect on a good choice of the other.

Benchmark

Examples
cP
 mP

Gates.No

add1.pla

add2_3c.pla

mult2.pla

Table 3. Compression crossover and mutation.

Note: (mP) is mutation rate and (Pc) probabilities of crossover rate.

Table 3 shows the effect of cP
 and mP

 on the number of gates. Figure 7 shows the

plot of different probability of crossover cP
 with the number of gates. The plot of

probability of mutation mP
 and the number of gates is shown in figure 8. However if

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 9حقوق الطبع محفوظة للمجلة

No.Gates vs population size

0

1

2

3

4

5

6

7

8

9

5 15 20 30 50

population size

N
o

.G
a
te

s Add1c.pla

Add2_3c.pla

Mult2.pla

mc PorP
 are too low, few changes are made from generation to generation, leading

to static population.

Figure 7. Effect of P (Crossover)

Figure 8. Effect of P (Mutation)

 Population Size

The probability of crossover and mutation were then fixed at the values given

above, and attention was turned to discovering a good value for population size.

Increasing in the population size increase its diversity and reduces the probability that

the GA will prematurely converge to a local optimum, but it also increases the time

required for the population to converge to the optimal regions in the search space. The

template is designed so that author affiliations are not repeated each time for multiple

authors of the same affiliation. Please keep your affiliations as succinct as possible

(for example, do not differentiate among departments of the same organization). This

template was designed for two affiliations.

Crossover probability vs No.Gates

0

1

2

3

4

5

6

7

8

0.1 0.2 0.4 0.6 0.8

P (Crossover)

N
o

.G
a
te

s Add1c.pla

Add2_3c.pla

Mult2.pla

Mutation probability vs No.Gates

0

1

2

3

4

5

6

7

8

0.08 0.01 0.01 0.025 0.05

P (Mutation)

N
o

.G
a
te

s Add1c.pla

Add2_3c.pla

Mult2.pla

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 11حقوق الطبع محفوظة للمجلة

 The population size was varied from an initial setting (5) by doubling and

halving to explore the value around 15. As shown in table 3.

 The aggregation of results has been treated in the same way as in the previous

section. Also plotted are the numbers of gates (No. Gates) Vs Population sizes in

figure 9. The plots shows that increasing the population size will, on average, lead to

decreased number of gates.

Benchmark Example Population_ size No. Gates

add1.pla

Add2_3c.pla

mult2.pla

Table 3. Population size numbers of gates and number of literal

4. GAs Generation

In this section, we compare the effect of the number of generations on three

benchmarks with the crossover and mutation rate fixed. The results obtained are

tabulated and plotted as shown in figure 10. In the table 3, number of generations was

varied from 10 to 500. It was clear this range is large enough to see the effect of this

parameter on the GA.

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 11حقوق الطبع محفوظة للمجلة

Benchmark examples N0. Generation No.Gates

add1.pla

Add2_3c.pla

mult2.pla

Table 4. Result number of generation.

Figure 9. Effect of Generation Size.

From tabulated and graphical results it was decided to choose the number of

generation =100. This gave us better results in less time.

6.Comparison of results

 The second set of experiments aims to compare the GA results with human design

.These comparisons were based on the number of the gates.

The genetic algorithm with population size of 20 was demonstrated for the probability

of crossover is 0.25 and the probability of mutation is 0.01. The number of

generations over which GA was run was 100. The number of generations required for

GA to operate effectively was lower somewhere between 50 and 100. The number of

No.Generation vs No.Gates

0

1

2

3

4

5

6

7

8

9

10 20 50 100 500

No.Generation

N
o

.G
a
te

s Add1c.pla

Add2_3c.pla

Mult2.pla

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 12حقوق الطبع محفوظة للمجلة

generations was over 100 and it took less than 10 minutes of CPU time to run. The

results obtained from the GAs are compared with human design in terms of two inputs

gates required in Table 5.

Benchmarks

Examples

Number of

product

Genetic

algorithm

Human

design

Add1c 4 Gates 6 Gates

Mult2 Gates 13 Gates

Exam1 4 Gates 6 Gates

Exam2 8 Gates 12 Gates

Exam3 4 Gates 7 Gates

Exam4 8 Gates 12 Gates

Table 5.Comparison of Gas with Human designer based on the

number of gates.

The main observation to make from these tables is that, the genetic algorithm

produces superior solutions to the logic circuit problem compared with human

designer. In all benchmark tested in Table 5. the GA produce better results compared

to human designer Experimental results For the 7 benchmark tested showed that the

GA could generate logic circuit, which required on average 15.44% fewer gates. The

area is estimated as the sum of gates area.

7.Conclusion

EHW proposed as a new method for designing circuits for complex real world

applications.

One of the problems has been that only small and simple circuits have been evolvable.

This paper highlights some of the reasons that can explain why EHW has not yet been

widely applied. Further, to make EHW more application, an increased complexity

scheme is proposed, where evolving smaller sub-circuits evolves a circuit. Extrinsic

evolvable hardware still has two useful features not provided by intrinsic evolvable

hardware. Extrinsic evolvable hardware can work with any design paradigm, and so any

bias towards a particular kind of circuit behavior is limited only by the researcher‟s

imagination and the quality of the simulation used for evaluation.

 لسابعا العدد

 March 20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية

Al-Riyadah Journal For Researches

And Scientific Activities

 for the journal Copyright © 13حقوق الطبع محفوظة للمجلة

 . References

 D Goldbery, “Genetic Algorithm in Search, Optimization, and Machine

Learning,” Addison Wesley, 989

 Almaini A.E.A. and Zhuang N., and Bourset F. Minimization of multioutput

binary decision diagrams using hybrid generic algorithm. IEEE Electronic Letters,

 : - , 99

 H Liang, W Luo and X Wang, “A tree-step decomposition method for the

evolutionary design of sequential logic circuits,” in Genet Program Evolvable

Mach, vol.10,pp.231- , 9

 P. K. Lala, Practical Digital Design and Testing, Prentice Hall, 1996.

 S Louis, „„Genetic algorithm as computational tool for design,‟‟ PhD

Dissertation, Department of Computer Science, Indiana University, 1993.

 A Thompson, „„An evolved circuit, intrinsic in silicon, entwined with physics,‟‟

in Proceedings of the 1st International Conference on Evolvable Systems: From

Biology to Hardware (ICES96), Lecture Notes in Computer Science, T. Higuchi,

et al. (eds.) Springer-Verlag, vol. 1259, 1997, pp. 390–

 Darringer, j., et. Al., (1984) LSS: A system for production of logic synthesis. IBM

J. Res. Develop. Vol. 28, pp. 537-

 8 Almaini A.E.A. and Zhuang N. Using genetic algorithms for the variable ordering

of reed-muller binary decision diagrams. Microelectronic Journal, 26 (4): 471-

 8 , 99

 9 Bystrov A. and Almaini A.E.A. Testability and test compaction for decision

diagram circuits. IEEE Proceedings on Circuits, Devices and Systems., 146 (4):

 - 8, 999

 Miller J.F., Kalganova T., Lipnitskaya N., and Job D. The genetic algorithm as a

discovery engine: Strange circuits and new principles. In Proc. of the AISB,99

Symposium on Creative Evolutionary Systems, CES,99, ISBN 1-902956-03-6,

page 65-74. Edinburgh, UK, The Society for the Study of Artificial Intelligence

and Simulation of Behaviour, April 1999.

 Murakawa M., Yoshizawa S., Kajitani I., Furuya T., Iwata M., and Higuchi T.

Hardware evolution at function level. In Proc. of the Fifth International

Conference on Parallel Problem Solving from Nature (PPSNIV), Lecture Notes in

Computer Scienec. Springer-Verlag. Heidelberg, 1996.

