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Abstract 

     Evolvable Hardware (EHW) refers to the generation of electronic circuits using 

evolutionary algorithms (in our case genetic algorithms).Genetic algorithm (GA) is a 

robust search algorithm loosely based on population genetics. It effectively seeks 

solutions from a vast search space at reasonable computation costs. Before a GA 

starts, a set of candidate solutions, represented as binary bit strings, are prepared. This 

set is referred to as a population, and each candidate solution within the set as a 

chromosome. A fitness function is also defined which represents the problem to be 

solved in terms of criteria to be optimized. The chromosomes then undergo a process 

of evaluation, selection, and reproduction. In the evaluation stage, the chromosomes 

are tested according to the fitness function. The results of this evaluation are then used 

to weight the random selection of chromosome in favor of the fitter ones for the final 

stage of reproduction. In this final stage, new generations of the chromosomes are 

"evolved" through genetic operations which attempt to pass on better characteristics 

to the next generation. Through this process, which can be repeated as many times as 

required, less fit chromosomes are gradually expelled from a population and the fitter 

chromosomes become more likely to emerge as the final solution. 

Keywords:Evolvable Hardware; Genetic algorithm;Evolutionary 

algorithms;sequential logic circuit. 

1.Introduction  

The modeling methodology presented in this paper has been adopted for the early 

steps of the whole development process through which the evolvable chip is obtained. 

Also this high level of simulation and modeling makes possible prediction that, the 
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evolvable hardware solution is possible to the given task, i.e. image compression [1]. 

Hardware Description languages (HDL) is selected toward hardware implementation 

because it is a rich standard language and many well supported tools for efficient 

simulation and modeling are exist [2]. 

    The use of HDL language in simulation and modeling of systems allows designing 

parameterized designs, possibility of module reuse, easy management of large 

designs, enhanced readability, and designs written independently of the technologies 

used for its final realization.  

In a sequential logic circuit, the outputs depend not just on the current values of the 

inputs, but also on past values of the inputs. The circuit has memory. Sequential 

circuits can do two things that combinational circuits cannot: they can recognize 

sequences of inputs and they can generate sequences of outputs. Efforts have been 

done to evolve the sequential logic circuits [3] 

     A sequential logic circuit can be made by adding feedback to a combinational logic 

circuit: 

2.   Genetic Algorithms 

The automated synthesis of digital logic to satisfy the function specification is a well-

researched area [4, 5, 6]. This section presents the main operation and features of a 

conventional GA.  

To apply evolution to the design of circuits, one or more candidate designs are 

described by a string of bits within a memory pool. This memory keeps the so called 

phenotype or population, which initially consists of randomly selected binary-strings 

named chromosomes, individuals or genotype and may encode the configuration of 

reprogrammable arithmetic and logic units or reprogrammable interconnections 

between hardware components. Each one of these chromosomes is evaluated in terms 

of how accurately the given configuration (chromosome) approaches the targeted 

functionality. The evaluation mechanism is called the fitness-function and 

incorporates one or more objectives that characterize the ideal behavior of a circuit 
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[7]. Moreover, GAs employ simple operators during reproduction, such as crossover 

and mutation. At each reproduction two new chromosomes are produced (offspring's) 

from the parents, which are selected based on their fitness-score from the current 

population. The aim of the GA is to potentially produce fitter chromosomes compared 

with those comprising the old population. This iterative process is repeated until an 

acceptable solution is found or a specified number of iterations, called generations, 

have been completed. Figure 2 depicts the design flow of a generic GA. According to 

this, the first population is initialized with random candidate designs. 

 

Figure 1:Design flow of a generic GA 

The Algorithms  

   Randomly generate an initial population M(0)  

   Compute and save the fitness u(m) for each individual m in the current 

population M(t)  

   Define selection probabilities p(m) for each individual m in M(t) so that p(m) 

is proportional to u(m)  

   Generate M(t+1) by probabilistically selecting individuals from M(t) to 

produce offspring via genetic operators  

   Repeat step 2 until satisfying solution is obtained.  

 



 

 لسابعا العدد

   March  20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية   

Al-Riyadah Journal For Researches 

And  Scientific Activities 

 

 for the journal   Copyright ©                       4حقوق الطبع محفوظة  للمجلة              

 

3. Evolvable Hardware 

 

Figure 2: Taxonomy of evolvable hardware 

Evolvable Hardware (EHW) techniques apply machine-learning methods to the 

automated design, configuration, or repair of electronic devices [8].  While EHW is a 

new and growing field, it has been successfully applied to obtain useful results in a 

variety of digital logic and arithmetic circuit applications as well as amplifier circuits, 

antenna designs and other areas.  In this laboratory assignment. 

Here, the fundamental concept behind EHW is to use Genetic Algorithms to obtain 

FPGA configurations autonomously. GAs utilize principles gleaned from natural 

evolutionary processes as an optimization method where the fundamental premise is 

that the better-suited offspring from the current generation will be chosen to be 

present in the succeeding generation, leading to a gradual but steady increase in the 

capabilities of the individuals in the population [9]. 

Population-based GAs for EHW start out with a random or semi-random population 

of designs, each of which constitute potential design candidates that solve the problem 

at hand.  These designs are then optimized by applying genetic operators.  Genetic 

operators include crossover of useful traits from 2 existing designs and random 

mutation that adds new traits to individuals in the population.  Ideally, after applying 

these genetic operators and selecting the best circuits that result from them, each 

solution is more optimal than its predecessors. 
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4. Evolutionary Algorithms 

Evolutionary Algorithm theory and show the corresponding between Evolutionary 

Algorithm and classic design model. Evolutionary Algorithms has appeared as a 

general concept for developing new computational models for optimization and 

design [10]. The principles of evolution in nature have been modeled in a variety of 

different ways and thus a number of computational models have been developed. 

These are referred to as Evolutionary Algorithms. Evolutionary algorithms have a 

common conceptual basis associated with the simulation of two fundamental 

processes [11]. These are the processes of random variation and selection within a 

population, described by Charles Darwin (1859) as the principles of evolution.  

The interplay of variation and selection gradually pulls the population to a target that 

in evolutionary computation is merely the solution of a computational problem. Thus 

evolutionary search is employed to solve difficult problems in optimization and 

design. In many problems, evolutionary algorithms have been found to produce 

solutions that are better than those produced by the traditional design and other search 

techniques. Solutions obtained by evolution are often unusual in construction, since 

they are generated in a completely different manner from the conventional methods 

for optimization and design. This concept of evolutionary design of efficient and 

novel solutions has also been adopted in the electronic circuit. Design (see Figure 3).  

 

Figure 3. Use of the evolutionaryalgorithms (EA) to create electronic circuits 

5.Genetic Operators 

Five phases are considered in a genetic algorithm. 

Initial Population 

     The process begins with a set of individuals which is called a Population. Each 

individual is a solution to the problem you want to solve.An individual is 

characterized by a set of parameters (variables) known as Genes. Genes are joined 

into a string to form a Chromosome (solution). In a genetic algorithm, the set of genes 



 

 لسابعا العدد

   March  20 مارس

 مجلة الريادة للبحوث والأنشطة العلمية   

Al-Riyadah Journal For Researches 

And  Scientific Activities 

 

 for the journal   Copyright ©                       6حقوق الطبع محفوظة  للمجلة              

 

of an individual is represented using a string, in terms of an alphabet. Usually, binary 

values are used (string of 1s and 0s). We say that we encode the genes in a 

chromosome. 

 

Figure 4.Population, Chromosomes and Genes 

2. Fitness Function 

The fitness function determines how fit an individual is (the ability of an individual to 

compete with other individuals). It gives a fitness score to each individual. The 

probability that an individual will be selected for reproduction is based on its fitness 

score. 

3. Selection 

The idea of selection phase is to select the fittest individuals and let them pass their 

genes to the next generation.Two pairs of individuals (parents) are selected based on 

their fitness scores. Individuals with high fitness have more chance to be selected for 

reproduction. 

4. Crossover 

Crossover is the most significant phase in a genetic algorithm. For each pair of 

parents to be mated, a crossover point is chosen at random from within the genes. For 

example, consider the crossover point to be 3 as shown below 

 

Figure 5.Crossover point 
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Offspring are created by exchanging the genes of parents among themselves until the 

crossover point is reached. 

 

Figure 6. Exchanging genes among parents 

 

The new offspring are added to the population 

 

Figure 6. New offspring 

5.Mutation 

      In certain new offspring formed, some of their genes can be subjected to a 

mutation with a low random probability. This implies that some of the bits in the bit 

string can be flipped. 

 

Figure 7. Mutation: Before and After 

Mutation occurs to maintain diversity within the population and prevent premature 

convergence. 

1.Benchmark Set 

A subset of the PLA benchmark set given in Table 2 is used in this evaluation. The 

table shows the benchmarks used, together with their number of input/ 

output/products. 
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Benchmark # Input # Output # p 

Add1c.pla       

Add2_3c.pla       

Mult2.pla        

Exam1.pla       

Exam2.pla       

Exam3.pla       

Exam4.pla       

Table 2. Statistics of benchmark examples 

2. Crossover and mutation 

Crossover and mutation probabilities are dealt with as a single unit, as they are 

similar and each has a significant effect on a good choice of the other. 

Benchmark 

Examples 
cP
 mP

 
Gates.No

 

add1.pla             

             

             

             

             

add2_3c.pla             

             

             

             

             

mult2.pla             

             

             

             

             

Table 3. Compression crossover and mutation. 

Note:  ( mP ) is mutation rate and ( Pc ) probabilities of crossover rate. 

Table 3 shows the effect of cP
 and mP

 on the number of gates. Figure 7 shows the 

plot of different probability of crossover cP
 with the number of gates. The plot of 

probability of mutation mP
 and the number of gates is shown in figure 8. However if 
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No.Gates vs population size
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mc PorP
 are too low, few changes are made from generation to generation, leading 

to static population. 

 

Figure 7. Effect of P (Crossover) 

 

Figure 8. Effect of P (Mutation) 

   Population Size 

The probability of crossover and mutation were then fixed at the values given 

above, and attention was turned to discovering a good value for population size. 

Increasing in the population size increase its diversity and reduces the probability that 

the GA will prematurely converge to a local optimum, but it also increases the time 

required for the population to converge to the optimal regions in the search space. The 

template is designed so that author affiliations are not repeated each time for multiple 

authors of the same affiliation. Please keep your affiliations as succinct as possible 

(for example, do not differentiate among departments of the same organization). This 

template was designed for two affiliations. 
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   The population size was varied from an initial setting (5) by doubling and 

halving to explore the value around 15. As shown in table 3. 

   The aggregation of results has been treated in the same way as in the previous 

section. Also plotted are the numbers of gates (No. Gates) Vs Population sizes in 

figure 9. The plots shows that increasing the population size will, on average, lead to 

decreased number of gates. 

Benchmark Example Population_ size No. Gates 

add1.pla     

      

      

       

      

Add2_3c.pla     

      

      

      

      

mult2.pla     

      

      

      

      

Table 3. Population size numbers of gates and number of literal 

4. GAs Generation 

In this section, we compare the effect of the number of generations on three 

benchmarks with the crossover and mutation rate fixed. The results obtained are 

tabulated and plotted as shown in figure 10. In the table 3, number of generations was 

varied from 10 to 500. It was clear this range is large enough to see the effect of this 

parameter on the GA. 
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Benchmark examples  N0.  Generation No.Gates 

add1.pla      

      

      

       

       

Add2_3c.pla      

      

      

       

       

mult2.pla      

      

      

       

       

 

Table 4. Result number of generation. 

 

Figure 9. Effect of Generation Size. 

From tabulated and graphical results it was decided to choose the number of 

generation =100. This gave us better results in less time. 

6.Comparison of results 

      The second set of experiments aims to compare the GA results with human design 

.These comparisons were based on the number of the gates. 

The genetic algorithm with population size of 20 was demonstrated for the probability 

of crossover is 0.25 and the probability of mutation is 0.01. The number of 

generations over which GA was run was 100. The number of generations required for 

GA to operate effectively was lower somewhere between 50 and 100. The number of 
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generations was over 100 and it took less than 10 minutes of CPU time to run. The 

results obtained from the GAs are compared with human design in terms of two inputs 

gates required in Table 5. 

Benchmarks 

Examples 

Number of  

product 

Genetic 

algorithm 

Human 

design 

Add1c   4 Gates 6 Gates 

Mult2      Gates 13 Gates 

Exam1   4 Gates 6 Gates 

Exam2    8 Gates 12 Gates 

Exam3   4 Gates 7 Gates 

Exam4    8 Gates 12 Gates 

Table 5.Comparison of Gas with Human designer based on the 

number of gates. 

The main observation to make from these tables is that, the genetic algorithm 

produces superior solutions to the logic circuit problem compared with human 

designer. In all benchmark tested in Table 5. the GA produce better results compared 

to human designer Experimental results For the 7 benchmark tested showed that the 

GA could generate logic circuit, which required on average 15.44% fewer gates. The 

area is estimated as the sum of gates area. 

7.Conclusion 

EHW proposed as a new method for designing circuits for complex real world 

applications.  

One of the problems has been that only small and simple circuits have been evolvable. 

This paper highlights some of the reasons that can explain why EHW has not yet been 

widely applied. Further, to make EHW more application, an increased complexity 

scheme is proposed, where evolving smaller sub-circuits evolves a circuit. Extrinsic 

evolvable hardware still has two useful features not provided by intrinsic evolvable 

hardware. Extrinsic evolvable hardware can work with any design paradigm, and so any 

bias towards a particular kind of circuit behavior is limited only by the researcher‟s 

imagination and the quality of the simulation used for evaluation. 
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